Given:
• Mass of each, m = 1.67 x 10⁻²⁷ kg
,
• Velocity, v = 9.26 x 10⁶ m/s
,
• B = 2.84 teslas
Let's sole for the following:
• (a). What magnetic force acts on the alpha particle?
Apply the formula:
![F=qvB](https://img.qammunity.org/2023/formulas/physics/college/cihucge8roulf3ihy2ekcxe2gkm4ef5aco.png)
Where:
Charge of proton = 1.609 x 10⁻¹⁹ C
Charge of neutron = 0
Thus, we have:
![\begin{gathered} F=(2*1.609*10^(-19))*(9.26*10^6)*2.84 \\ \\ F=8.46*10^(-12)\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pqlt9ungtiz1so2w573ektutvianwcfttx.png)
The magnetic force that acts on the alpha particle is 8.46 x 10⁻¹² N.
• (b). Let's find the radius of curvature of the path of the alpha particle?
To find the radius, apply the formula:
![F=(mv^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/5ok2axeikntd82rxf4s17nike27avi0e84.png)
Where:
F is the force
m is the total mass
v is the velocity
r is the radius
Rewrite the formula for r, plug in the values and solve.
We have:
![\begin{gathered} r=(mv^2)/(F) \\ \\ r=((4*1.67*10^(-27))*(9.26*10^6)^2)/(8.46*10^(-12)) \\ \\ r=(5.7279*10^(-13))/(8.46*10^(-12)) \\ \\ r=0.0677 \\ \\ r=6.77*10^(-2)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hyzmhxvqyv6xalg3a656d1b2i2xq28qe2u.png)
The radius of the curvature of the path is 6.77 x 10⁻² m.
ANSWER:
(a). 8.46 x 10⁻¹² N.
(b). 6.77 x 10⁻² m.