The speed of sound in air at a given temperature is given by:
![v=331\sqrt[]{1+(T)/(273)}](https://img.qammunity.org/2023/formulas/physics/college/dx7fgpct0wcibxzocg0d9sz3ou1pe6ziax.png)
Then we need to plug the value of the temperature to determine each case.
A.
![v=331\sqrt[]{1+(0)/(273)}=331](https://img.qammunity.org/2023/formulas/physics/college/zdcvwp6wr50qfhdl5ya11mcdvelhwht185.png)
B.
![v=331\sqrt[]{1+(25)/(273)}=345.82](https://img.qammunity.org/2023/formulas/physics/college/r51si9fv8e2flp4t4suwyecldgid92psjo.png)
C.
![v=331\sqrt[]{1+(30)/(273)}=348.71](https://img.qammunity.org/2023/formulas/physics/college/48pa242qj51ewzpjuwno6wxfkn9314j53m.png)
D.
![v=331\sqrt[]{1+((-15))/(273)}=321.78](https://img.qammunity.org/2023/formulas/physics/college/qs7ypm2ke5lxj7ptb671bexlai6s1b20zi.png)
Therefore the speeds for the given temperatures are:
A. 331 m/s
B. 345.82 m/s
C. 348.71 m/s
D. 321.78 m/s