In triangle ABC, a is the length of the side opposite to angle A (side BC), b is the length of the side opposite to angle B (side AC), and c is the length of the side opposite to angle C (side AB)
We can use the cosine rule to find the length of each side
![\begin{gathered} a=\sqrt[]{b^2+c^2-2bc\cos A} \\ b=\sqrt[]{a^2+c^2-2ac\cos B} \\ c=\sqrt[]{a^2+b^2-2ab\cos C} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2mntf4m5l6a619bmjpplc15hfysqfancyu.png)
From the given figure we can see triangle ABC, where We will use the cosine rule to find c
![c=\sqrt[]{a^2+b^2-2ab\cos 90^(\circ)}](https://img.qammunity.org/2023/formulas/mathematics/college/u292a7yck77162kd9t8bgjxrqxp9zmr58x.png)
Since cos(90) = 0, then
![\begin{gathered} c=\sqrt[]{a^2+b^2-2ab(0)} \\ c=\sqrt[]{a^2+b^2-0} \\ c=\sqrt[]{a^2+b^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9v49t5ly04t65c479ffpzp895ya2sjum8f.png)
The expression equivalent to c is
![\sqrt[]{a^2+b^2}](https://img.qammunity.org/2023/formulas/mathematics/college/qy0o84qe8ms0wrfoju143f2ygpsqwoml06.png)