A system of three equations with three unknowns can be written in matrix form as shown below:

Then, x, y, and z are given by the expressions:
![x=\frac{\det(\begin{bmatrix}{d_1} & {b_1} & {c_1} \\ {d_2} & {b_2} & {c_2} \\ {d_3} & {b_3} & {c_3}\end{bmatrix})}{\det(\begin{bmatrix}{a_1} & {b_1} & {c_1} \\ {a_2} & {b_2} & {c_2} \\ {a_3} & {b_3} & {c_3}\end{bmatrix})},y=\frac{\det(\begin{bmatrix}{a_1} & {d_1} & {c_1} \\ {a_2} & {d_2} & {c_2} \\ {a_3} & {d_3} & {c_3}\end{bmatrix})}{\det(\begin{bmatrix}{a_1} & {b_1} & {c_1} \\ {a_2} & {b_2} & {c_2} \\ {a_3} & {b_3} & {c_3}\end{bmatrix})},z=\frac{\det(\begin{bmatrix}{a_1} & {b_1} & {d_1} \\ {a_2} & {b_2} & {d_2} \\ {a_3} & {b_3} & {d_3}\end{bmatrix})}{\det(\begin{bmatrix}{a_1} & {b_1} & {c_1} \\ {a_2} & {b_2} & {c_2} \\ {a_3} & {b_3} & {c_3}\end{bmatrix})}]()
Then, in our problem:

Therefore, x is equal to

Therefore, x= -6
As for y,

Thus, y= -1.
Finally solving for z:

Hence, z=1
The answer is (-6, -1, 1)