![\begin{gathered} m\measuredangle1=34 \\ m\measuredangle2=56 \\ m\measuredangle3=146 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fbl1rp62oq0nf5wny8tyhyevka9diutdmt.png)
Step-by-step explanation
Step 1
as the horizontal lines are parallel, the angles (1) and x are congruents, so
![\begin{gathered} m\measuredangle1=x \\ so,\text{replacing} \\ m\measuredangle1=34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r02qovjxr7yrkcdo8bkxvsmpnd5ji3ohun.png)
Step 2
Now, we can see that angles (1) and (2) are complementary angesl (When two angles add to 90°)
so
![\begin{gathered} m\measuredangle1+m\measuredangle2=90 \\ \text{replacing} \\ 34+m\measuredangle2=90 \\ \text{subtract 34 in boht sides} \\ -34+34+m\measuredangle2=90-34 \\ m\measuredangle2=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3gxeiowjs9trkvw8ow0wfo0r8wqip1ii90.png)
Step 3
finally, angles (1) and angle (3) are supplementary angles (Two Angles are Supplementary when they add up to 180 degrees)
so
![\begin{gathered} m\measuredangle1+m\measuredangle3=180 \\ \text{replace} \\ 34+m\measuredangle3=180 \\ to\text{ solve for x, subtract 34 in both sides} \\ -34+34+m\measuredangle3=180-34 \\ m\measuredangle3=146 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6v2xntwb7i3e6vfkbmhsharr706e5iql3d.png)
i hope this helps you