Given:
The mass of the truck is m1 = 912 kg
The initial velocity of the truck is
![\begin{gathered} v_(1i)=\text{ 59.6 km/h} \\ =59.6*\frac{1000\text{ m}}{3600\text{ s}} \\ =\text{ 16.556 m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7e73kgz1imi2hun0gpberdwhevrsa4g5w6.png)
The mass of the car is m2 = 618 kg
The initial velocity of the car is
![v_(2i)=\text{ 0 m/s}](https://img.qammunity.org/2023/formulas/physics/college/ewlx0ap60hte7u9frn90rhonviatachog3.png)
To find the velocity of the truck and car after the collision.
Step-by-step explanation:
According to the conservation of momentum,
![\begin{gathered} m1v_(1i)+m1v_(2i)=\text{ \lparen m1+m2\rparen v}_f \\ v_f=(m1v_(1i)+m1v_(2i))/(m1+m2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/c4ormgagpzhgclhijv23bvvo6gkpokg4tz.png)
On substituting the values, the magnitude of velocity after the collision will be
![\begin{gathered} v_f=\frac{(912*\text{ 16.556\rparen -\lparen618}*0\text{\rparen }}{(912+618)} \\ =\text{ 9.86 m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ebbiu5dodvyzr81ty7kiww5gssmbcc889i.png)
Thus, the magnitude of velocity after the collison is 9.86 m/s