168,990 views
43 votes
43 votes
Write the complex number in trigonometric form.
z = 5 - 5i

User Omkaartg
by
2.4k points

1 Answer

20 votes
20 votes

Answer:


\large \boxed{ \boxed{ \red{ \ \rm 5 √(2) ( \cos( (7\pi)/(4) ) + i \sin( (7\pi)/(4) ) )}}}

Explanation:

to understand this

you need to know about:

  • imaginary number
  • PEMDAS

tips and formulas:


  • \sf \: formula \: of \: trigonometric \: form : \\ \rm r( \cos( \theta) + i \sin( \theta) )

  • \rm \: r = \sqrt{ {a}^(2) + {b}^(2) }

  • \rm \theta = \arctan( (b)/(a) )

given:

  • z=5-5i

let's solve:

complex number:a+bi

therefore

  • our a is 5
  • our b is -5


\sf sustitute \: the \: value \: of \: a \: and \: b \: into \: the \: modulus :


\rm \: r = \sqrt{ {5}^(2) + ( { - 5)}^(2) }


\sf simplify \: squres :


\rm \: r = √(25 + 25)


\sf simplify \: addition :


\rm \: r = √(50)


\sf rewrite \: 50 \: as \: 2 * 25


\sf r = √(2 * 25)


\sf use \: √(ab) \iff \: √(a ) √(b) :


\rm r = √(25) √(2)


\therefore \rm \: r = 5 √(2)


\sf sustitute \: the \: value \: of \: a \: and \: b \: into \: the \: agrument :


\rm \theta = \arctan(( - 5)/(5) )


\sf simplify \: divition :


\rm \theta = \arctan( - 1)


\theta = - (\pi)/(4)


\sf add \: 2\pi \: to \: get \: a \: positive \: agrument


\rm \theta = - (\pi)/(4) + 2\pi \\ \rm\therefore \: \theta = (7\pi)/(4)


\sf \: sustitute \: the \: value \: of \: \rm \: r \: and \: \theta : \\ \rm 5 √(2) ( \cos( (7\pi)/(4) ) + i \sin( (7\pi)/(4) ) )


\text{And we are done!}

User Sajib Khan
by
3.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.