Answer: We have to find the JK, the simple answer is as follows, it is calculated by first finding the angle M and then using a trigonometric ratio to calculate the JK.
The simple and brief steps are as follows:
![\begin{gathered} \angle M=\theta_T=\sin^(-1)((LJ)/(LM))=\sin^(-1)((12)/(20))=36.869897646^(\circ) \\ \\ \theta=(\theta_T)/(2)=18.434948823^(\circ)\approx18.435^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/470acbrrhpt8y35jcsyy8lqjnsqaszrkmx.png)
Therefore the JK is:
![\begin{gathered} \tan(\theta)=(JK)/(JM)\rightarrow\tan(18.435^(\circ))=(JK)/(16) \\ \\ \\ JK=16\tan(18.435^(\circ))=5.3333333\approx5.34 \\ \\ \\ JK\approx5.34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nxdcwvpgcsbmljnmt1s20yz6yi435kw7f2.png)
Therefore JK is 5.34.