The rule of the FV (future value) is
![FV=P((1+i)^n-1)/(i)](https://img.qammunity.org/2023/formulas/mathematics/college/h12ed5wa6qm10vg9xtz9zo13ud67gkwk8b.png)
P is the value each month
i is the rate divided by 12 month
n = number of years x 12 months
Since the deposit every month is $1643, then
![P=1643](https://img.qammunity.org/2023/formulas/mathematics/college/ky4h8awyinn9by6c8x7l86eysyh5kzl68f.png)
Since the annuity rate is 4.5%, then
![\begin{gathered} i=(4.5)/(12)=0.375\text{ \%} \\ i=(0.375)/(100)=0.00375 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/notrqznha9rptt5sji0x49jlxyiafpv25f.png)
Since the number of years is 11 years, then
![\begin{gathered} n=11*12 \\ n=132 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b0ctwdcc16zwx7rkfzneasfmculmjtfm2x.png)
Substitute them in the rule above
![\begin{gathered} FV=1643((1+0.00375)^(132)-1)/(0.00375) \\ FV=279958.5032 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2dmgfnkxrot0gyoeejcmxbw3yw3h9b4ase.png)
The account will have $279,959 after 11 years to the nearest dollar
To find the interest subtract $1643 x 132 months from the FV
![\begin{gathered} I=FV-n* P \\ I=279959-132*1643 \\ I=63083 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m5dy1qdkvyy2mtbnjcru6ekwam7n7jxl73.png)
The amount of interest is $63,083 to the nearest dollar