The given function is,
![f(x)=log_2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/7cqxcr0tpne0uebukuwfxt2w4uih1x0pbz.png)
The graph of the function will be plotted below
A vertical asymptote is a vertical line that guides the graph of the function but is not part of it.
Hence, the vertical asymptote is at
![x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/fbdfo5wsa562jve9mar3rnrxezpj37nli7.png)
The domain of a function f(x) is the set of all values for which the function is defined.
Hence, the domain of the function is
![\:\left(0,\:\infty \:\right)](https://img.qammunity.org/2023/formulas/mathematics/college/znxv9txo84m319szhw3xab61reszu5snh4.png)
The range of a function is the complete set of all possible resulting values of the dependent variable.
Hence, the range of the function is
![\:\left(-\infty \:,\:\infty \:\right)](https://img.qammunity.org/2023/formulas/mathematics/college/6fwo8b6gtr8qi7hbaxvsoyh504ojy97g0f.png)
Let get the f(x), when x = 2
![\begin{gathered} f(x)=log_2x+1 \\ \therefore f(2)=log_22+1 \\ Note:log_22=1 \\ \therefore f(2)=1+1=2 \\ \therefore f(2)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zcsrdmuidzdt2cvawgfo3qrmg1d5q6unoi.png)