13.7k views
3 votes
Determine whether the given information results in one triangle or two. a=6, b=2, A=20 degrees

User Omarion
by
7.6k points

1 Answer

3 votes

Given:

a = 6

b = 2

A = 20 degrees

a.) Let's determine Angle B. Apply the Sine Law.


\text{ }\frac{a}{S\text{ine A}}\text{ = }\frac{b}{S\text{ine B}}
\text{ }\frac{6}{S\text{ine }20^(\circ)}\text{ = }\frac{2}{S\text{ine B}}
\text{ Sine B = }((2)(Sine20^(\circ)))/(6)\text{ = 0.11400671444}
\text{ B = Sine}^(-1)(\text{0.11400671444)}
\text{ B }\approx6.55^(\circ)

b.) Let's find Angle C.


\angle A\text{ + }\angle B\text{ + }\angle C=180^(\circ)
20^(\circ)+6.55^(\circ)\text{ + }\angle C=180^(\circ)
\angle C+26.55^(\circ)=180^(\circ)
\angle C=180^(\circ)\text{ - }26.55^(\circ)
\text{ }\angle C=153.45^(\circ)

Therefore, the measure of Angle C is 153.45 degrees.

c.) Let's determine the length of side c. Apply the Sine Law.


\text{ }\frac{6}{S\text{ine }20^(\circ)}\text{ = }\frac{c}{S\text{ine }153.45^(\circ)}
c\text{ = }\frac{(6)(S\text{ine }153.45^(\circ))}{S\text{ine }20^(\circ)}
c\text{ }\approx\text{ 7.84}

In Summary, the information results in one triangle with the following details:

a = 6

b = 2

c = 7.84

A = 20 degrees

B = 6.55 degrees

C = 153.45 degress

User Stckvrw
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories