13.7k views
3 votes
Determine whether the given information results in one triangle or two. a=6, b=2, A=20 degrees

User Omarion
by
4.6k points

1 Answer

3 votes

Given:

a = 6

b = 2

A = 20 degrees

a.) Let's determine Angle B. Apply the Sine Law.


\text{ }\frac{a}{S\text{ine A}}\text{ = }\frac{b}{S\text{ine B}}
\text{ }\frac{6}{S\text{ine }20^(\circ)}\text{ = }\frac{2}{S\text{ine B}}
\text{ Sine B = }((2)(Sine20^(\circ)))/(6)\text{ = 0.11400671444}
\text{ B = Sine}^(-1)(\text{0.11400671444)}
\text{ B }\approx6.55^(\circ)

b.) Let's find Angle C.


\angle A\text{ + }\angle B\text{ + }\angle C=180^(\circ)
20^(\circ)+6.55^(\circ)\text{ + }\angle C=180^(\circ)
\angle C+26.55^(\circ)=180^(\circ)
\angle C=180^(\circ)\text{ - }26.55^(\circ)
\text{ }\angle C=153.45^(\circ)

Therefore, the measure of Angle C is 153.45 degrees.

c.) Let's determine the length of side c. Apply the Sine Law.


\text{ }\frac{6}{S\text{ine }20^(\circ)}\text{ = }\frac{c}{S\text{ine }153.45^(\circ)}
c\text{ = }\frac{(6)(S\text{ine }153.45^(\circ))}{S\text{ine }20^(\circ)}
c\text{ }\approx\text{ 7.84}

In Summary, the information results in one triangle with the following details:

a = 6

b = 2

c = 7.84

A = 20 degrees

B = 6.55 degrees

C = 153.45 degress

User Stckvrw
by
4.6k points