The parabola equation in vertex form is given by:
![\begin{gathered} y=a(x-h)^2+k \\ h\colon\text{horizontal coordinate of the vertex} \\ k\colon\text{vertical coordinate of the vertex} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v8rpt9dc15rejf8pjab8e7ecatrkzbqqdy.png)
From the given question, we are provided with the following:
![\begin{gathered} \text{vertex (1,-5)} \\ \text{point (x,y)= (-4,3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q4rcmtkwtzvu82bq62q3ak8tjxx1ly470j.png)
We have to use the given parameters to find the parameter 'a' from the parabola equation.
Thus, we have:
![\begin{gathered} y=a(x-h)^2+k \\ 3=a(-4-1)^2+(-5)^{} \\ 3=a(-5)^2-5 \\ 3+5=25a \\ 25a=8 \\ a=(8)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xkw4nwwwbaaenwke04dgqvw54ruqnv8o47.png)
Hence, the equation of the parabola is:
![\begin{gathered} y=(8)/(25)(x-1)^2+(-5) \\ y=(8)/(25)(x-1)^2-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rv8rpbsf57rjt82qdf60hbm83ua4ka8ckp.png)
The graph of the parabola on the xy-plane is shown below: