We are asked to determine the area of a circular sector. To do that we will use the following formula:
![A=(r^2\theta)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/twft72axfjw10z17m5qntwicltng0ohrwu.png)
Where:
![\begin{gathered} r=\text{ radius} \\ \theta=\text{ angle in radians} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vn7c7x88tra3egwcwpyr4pbkwrwub5t5vj.png)
Now, we convert the angle of 85° to radians using the following conversion factor:
![1\pi=180\text{degrees}](https://img.qammunity.org/2023/formulas/mathematics/college/tf5llhebiz3wpqw4sr4mauf46khxb2lwea.png)
Now, we multiply by the conversion factor:
![\theta=85*(\pi)/(180)=(17\pi)/(36)](https://img.qammunity.org/2023/formulas/mathematics/college/fhde121spc7ase5ms5uwnrqw4r146fbar3.png)
Now, we substitute in the formula for the area:
![A=((5m)^2((17\pi)/(36))^2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/tw6yj1mjqfxpltiyvp7xg8tepin9xjjy1e.png)
Substituting the value of pi for 3.14
![A=((5m)^2((17(3.14))/(36))^2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/ywgdctzprmtmc51o4nl5pbdkbrix3xlv4o.png)
Solving the operations:
![A=18.5m^2](https://img.qammunity.org/2023/formulas/mathematics/college/evv6rnr2929okt6wuj2i7khxc4fw1ttylr.png)
Therefore, the area is 18.5 square meters.