Given data:
The given inequality in the column A is 4x-30≥ -3x+12.
The given inequality in the column B is 1/2 x +3 < -2x-6.
The first inequality can be written as,
![\begin{gathered} 4x-30\text{ }\ge\text{ -3x+12} \\ 7x\ge42 \\ x\ge6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ubkfly69oosjue1x2go2ciji4o8djeec99.png)
The second inequality can be written as,
![\begin{gathered} (1)/(2)x+3<-2x-6 \\ (1)/(2)x+2x<-9 \\ (5)/(2)x<-9 \\ x<-3.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxrv2xau8pntqn8eyh1ya9gnq6oxd2n6ij.png)
Thus, the quantity in the column A is always greater, so first option is correct.