Solution
we are given the two linear equations
First Equation
![\begin{gathered} -2x+y=3 \\ \\ y=2x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a3f47oiax3bpn53vsistxltt9y9ve594uw.png)
Second Equation
![y=-(1)/(2)x-2](https://img.qammunity.org/2023/formulas/mathematics/college/8vx1b4b2qgotbvwvhzjbp4gr4akczaijly.png)
Let mA and mB denotes the gradient of the first and second equation respectively written as
![m_A\text{ and }m_B](https://img.qammunity.org/2023/formulas/mathematics/college/d2ntgltn2nbhtovnoa8gx6hghliu0hnqie.png)
Using the slope - intercepty form, one can see that
![\begin{gathered} m_A=2 \\ \\ m_B=-(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d3yrsoeo0aeni3c1ki1l2zx69fwmyg62jd.png)
Now,
![\begin{gathered} m_A* m_B=2*-(1)/(2) \\ \\ m_A* m_B=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ixwtj0ooqbfy8dt9ipse56rj4sx48j6tue.png)
Therefore, the lines are Perpendicular
Option B