146k views
2 votes
Find a possible function f(n) whose domain is a set of natural numbers and whose outputs are the terms of the sequence. -4^1, 4^(-1/2), 1, 4^(1/2), 4

1 Answer

3 votes

we have the sequence

4^=-1, 4^(-1/2), 1, 4^(1/2), 4​

so

a1=4^-1=1/14

a2=4^(-1/2)=(1/4)^(1/2)=1/2

a3=1

a4=4^(1/2)=2

a5=4

therefore

a2/a1=(1/2)/(1/4)=2

a3/a2=1/(1/2)=2

a4/a3=2/1=2

a5/a4=4/2=2

that means

Is a geometric sequence and the common ratio is r=2

the general formula is equal to


f(n)=a1\cdot(r)^((n-1))

substitute given values

a1=1/4

r=2


f(n)=(1)/(4)\cdot(2)^((n-1))

we have the function f(n)

Verify the outputs

For n=1

substitute


\begin{gathered} f(1)=(1)/(4)\cdot(2)^((1-1)) \\ f(1)=(1)/(4)\cdot(2)^((0)) \\ f(1)=(1)/(4)=4^(-1) \end{gathered}

For n=2


\begin{gathered} f(2)=(1)/(4)\cdot(2)^((2-1)) \\ f(2)=(1)/(4)\cdot(2)^((1)) \\ f(2)=(1)/(2) \end{gathered}

the general expression is


f(n)=(1)/(4)\cdot(2)^((n-1))

Remmeber that

(1/4)=4^-1=(2^2)^-1=2^-2

substitute in the given expression


\begin{gathered} f(n)=(1)/(4)\cdot(2)^((n-1)) \\ f(n)=(2)^((-2))\cdot(2)^((n-1)) \end{gathered}

Adds the exponents

-2+(n-1)=n-3

therefore


f(n)=2^((n-3))

an equivalent expression

User Yogesh Doke
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories