Solution
Given a triangle XYZ on the graph
The coordinates of points X, Y and Z are
![\begin{gathered} X\Rightarrow(-3,-1) \\ Y\Rightarrow(-2,-4) \\ Z\Rightarrow(-6,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/an9ci1qf0o87c1ercr51k7rpzm72kznc19.png)
To find the approximate length of the sides, we apply the formula to find the distance, d, between two points which is
![d=√((x_2-x_2)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1dph19ojb7uuk7jbe9a0jcmk1pm4ish7dd.png)
To find the approximate length of side XY, substitute the coordinates of points X and Y into the formula to find the distance, d, between two points
![\begin{gathered} XY=√((-3-(-2))^2+(-4-(-1))^2) \\ XY=√((-1)^2+(-3)^2) \\ XY=√(1+9)=√(10)=3.16\text{ units} \\ XY=3.16\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hk60fpnuncc7rpcn3ww03bzytxvyl3fbgz.png)
Hence, the approximate length of side XY is 3.16 units (option b)