104k views
2 votes
Please solve this question for me Note: the value of p=2

Please solve this question for me Note: the value of p=2-example-1

1 Answer

0 votes

Given:


\sum_{n\mathop{=}1}^(\infty)((np)^(-2))/((2)/(n^2)+(3)/(n)+1)

Find-:

Find the formula for n partial sum, and determine whether the series converges or diverges.

Explanation-:

The value is:


\begin{gathered} =\sum_{n\mathop{=}1}^(\infty)((np)^(-2))/((2)/(n^2)+(3)/(n)+1) \\ \\ =\sum_{n\mathop{=}1}^(\infty)(1)/(n^2p^2((1)/(n^2)+(3)/(n)+1)) \\ \\ =\sum_{n\mathop{=}1}^(\infty)(1)/(p^2((n^2)/(n^2)+(3n^2)/(n)+n^2)) \\ \\ =\sum_{n\mathop{=}1}^(\infty)(1)/(p^2(1+3n+n^2)) \end{gathered}

So, the value is,


=(1)/(p^2)\sum_{n\mathop{=}1}^(\infty)(1)/(n^2+3n+1)

Apply telescoping series


\sum_{n\mathop{=}1}^(\infty)(1)/(n^2+3n+1)=(1)/(2)

The value is:


\begin{gathered} =(1)/(p^2)*(1)/(2) \\ \\ =(1)/(2p^2) \end{gathered}

It is a series of converges.


\begin{gathered} =(1)/(2p^2) \\ \\ =(1)/(2(2)^2) \\ \\ =(1)/(2*4) \\ \\ =(1)/(8) \end{gathered}

User Klin
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories