Exponential function
Part A
We know that
![2^6=64](https://img.qammunity.org/2023/formulas/mathematics/college/pvkidhhhl7943ip2ad2ccmk19zb7tbf99v.png)
then
![\begin{gathered} (2^6)^x=1 \\ 64^x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ak394d9tibcfwqcv0hd5q394m3t6uls2is.png)
then, we want to find a value of x so if we multiply x times 64 it will be 1.
We know that any number with exponent 0 is 1:
![64^0=1](https://img.qammunity.org/2023/formulas/mathematics/college/pqby5kasi6mcukhh3kugss3kevkvpoosem.png)
Then x = 0
Part B
Since any number with exponent 0 is 1, then:
![5^0=1](https://img.qammunity.org/2023/formulas/mathematics/college/3i2kqw3reqll375livd47jum192u0vhz26.png)
Then,
![\begin{gathered} (5^0)^x=1 \\ 1^x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y8ua5erwb5xcca1vqu9723v0eb8as54h24.png)
So, we want to find a number for x so if 1 is multiplied x times it will be 1.
Everytime 1 is multiplied by itself the answer is 1:
![\begin{gathered} 1^2=1\cdot1=1 \\ 1^4=1\cdot1\cdot1\cdot1=1 \\ 1^(-2)=(1)/(1)\cdot(1)/(1)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/crki31vocztrtc1edan2st4ozmhcgrf3td.png)
Then, x is any number
x = ..., -2, -1, 0 , 1, 2, ...