Part A
The functions would be:
![\begin{gathered} WG(x)=x+5 \\ LG(x)=3x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lw50ru7egzl2y20cp9n9bmjayo5qohziqb.png)
Part B
![\begin{gathered} AG(x)=WG(x)\cdot LG(x) \\ \rightarrow AG(x)=(x+5)(3x+2) \\ \rightarrow AG(x)=3x^2+2x+15x+10 \\ \\ \Rightarrow AG(x)=3x^2+17x+10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x2p4x2z2mv8d3vfo4q9pr53m8yec2wqmm1.png)
Part C
Let's evaluate x = 7 in AG(x)
![\begin{gathered} AG(7)=3(7^2)+17(7)+10 \\ \rightarrow AG(7)=276 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8672rrj8kjuoo3qf1wmjt60oh8g6b8tfs1.png)
Thereby, the area of the garden would be 276 square feet
Part D
The functions would be:
![\begin{gathered} WB(x)=(x)/(2) \\ LB(x)=x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7rwjglal97r41nlq6doi1cefdvzed6a98x.png)
Part E
![\begin{gathered} AB(x)=WB(x)\cdot LB(x) \\ \rightarrow AB(x)=((x)/(2))(x+2) \\ \\ \Rightarrow AB(x)=(x^2)/(2)+x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p27tkpcot6kfea7wdbtjoecnxb7t7y9vu0.png)
Part F
![\begin{gathered} ATB(x)=x^2+AB(x) \\ \rightarrow ATB(x)=x^2+(x^2)/(2)+x \\ \\ \Rightarrow ATB(x)=(3)/(2)x^2+x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3uq4pjqk7geahtygo4tob19wdqfxa98kav.png)
Part G
![\begin{gathered} AR(x)=AG(x)-ATB(x) \\ \rightarrow AR(x)=3x^2+17x+10-(3)/(2)x^2-x \\ \\ \Rightarrow AR(x)=(3)/(2)x^2+16x+10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/135y5er73yrco974dukgnw6xje88xmg0rz.png)
Part H
We have a function for the area of the bell pepper patch in terms of x, the measurement of the lenght and width of the tomato patch. This is:
![AB(x)=(x^2)/(2)+x](https://img.qammunity.org/2023/formulas/mathematics/college/w6gmdpf5j337mpwjudpxw6iaqegdyn0bqb.png)
We know the value of this area. This way, we can solve the equation for x,
![31.5=(x^2)/(2)+x\rightarrow63=x^2+2x\rightarrow x^2+2x-63=0](https://img.qammunity.org/2023/formulas/mathematics/college/uy7vx995x9xf1j98pe5sv1iuh7qsvklja2.png)
Using the cuadratic formula, and ignoring non-positive results, we'll get that
![x=7](https://img.qammunity.org/2023/formulas/mathematics/college/zq1e40da7ft5m7vp2pp4z6wy99lb3uqekj.png)
Now, plugging in this value in AR(x),
![\begin{gathered} AR(7)=(3)/(2)(7^2)+16(7)+10 \\ \Rightarrow AR=195.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3rqrpxyx8rptpkslaqs43wcirhoduwvybw.png)
This way, we can conclude that the remaining space in the garden after planting tomatoes and bell peppers is 195.5 square feet