Recall that the supplementary angles sum to 180°
Let x and y are the two angles, so we can write
![x+y=180\degree\quad eq.1](https://img.qammunity.org/2023/formulas/mathematics/college/gao0su717p6vlux2iac4yymvv23nunfd17.png)
We are given that the difference of the two supplementary angles is 8°
So we can write
![\begin{gathered} x-y=8\degree \\ x=8\degree+y\quad eq.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jfrwu8n9qzfpnjn0uxgtslvolz8tktiy24.png)
Substitute eq.2 into eq.1
![\begin{gathered} x+y=180\degree \\ (8\degree+y)+y=180\degree \\ 8\degree+2y=180\degree \\ 2y=180\degree-8\degree \\ 2y=172\degree \\ y=(172\degree)/(2) \\ y=86\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ogd9u6x6ha06zbjkntr4lhcrykfasut0uv.png)
So, one angle is 86°, the other angle is
![\begin{gathered} x=8\degree+y \\ x=8\degree+86\degree \\ x=94\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y3za0wqss3v7si7008hl0q9pgjapdcswiv.png)
Therefore, the measure of the two angles is
86°, 94°