So we need to solve the following equation for x:

We can apply a square root to both sides but it is important to remember the following property. For any given number a we have:
![\sqrt[]{a^2}=\lvert a\rvert](https://img.qammunity.org/2023/formulas/mathematics/college/tu2b35it76jypvinjjp41qhxfyagdszhr3.png)
Which means that:
![\sqrt[]{a^2}=a\text{ and }\sqrt[]{a^2}=-a](https://img.qammunity.org/2023/formulas/mathematics/college/fp2egl0y0seo2u3tv1b26td3uvhfmq4rhq.png)
So for our case we have:
![\begin{gathered} \sqrt[]{x^2}=√(49) \\ \lvert x\rvert=7 \\ x=7\text{ and }x=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zhfplgffr8qyj4yh71vtphtaqyoe3xk4r9.png)
Then the solutions are 7 and -7.