Answer:
-12 and 14.
Step-by-step explanation:
Given the quadratic equation: x² -2x -168=0
First, we factorize the expression on the left-hand side.
![x^2-2x-168=(x\text{ )(x )}](https://img.qammunity.org/2023/formulas/mathematics/college/28alflz8s6cdrzdyeatalzzqiptizwyson.png)
Next, we multiply the first and last term,
![-168* x^2=-168x^2](https://img.qammunity.org/2023/formulas/mathematics/college/aubn9rfd1upaho0x6ryok4k7ouq7w02pme.png)
We then write factors of -168.
![\begin{gathered} -168=12\text{ and -14 } \\ -168=-12\text{ and 14} \\ \text{Add the factors:} \\ \text{12-14=-2} \\ -12+14=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4hhd9285bd3rpigdwooh3q9p6afevnf4z4.png)
We pick the factors that add up to the middle term: -2
![\begin{gathered} x^2-2x-168=0 \\ (x+12)(x-14)=0 \\ x+12=0\text{ or }x-14=0 \\ x=-12\text{ or x=14} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q20vhnq6qte702wq1uts0cgnpifx5e7j10.png)
The solutions to the quadratic equation are -12 and 14.