The Transitive property states that;
![\begin{gathered} \text{If} \\ a=b\text{ and b=c} \\ \text{Then} \\ a=c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2xkcglg2pq6q90zwhselzish9b3i9yet35.png)
So, from the question, if a =2+8, b = 4+6 and c =10.
![\begin{gathered} \text{Then;} \\ 2+8=4+6 \\ \text{becomes,} \\ a=b \\ \text{and} \\ 4+6=10 \\ \text{becomes,} \\ b=c \\ \text{and} \\ 2+8=10 \\ \text{becomes} \\ a=c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2i5krtm2g8lgvjlj8uq2bpn4xfp5g1k30y.png)
Therefore;
![\begin{gathered} If\text{ 2+8=4+6 and 4+6=10 then 2+8=10 is equivalent to the Transitive property} \\ which\text{ states that If a=b and b=c then a=c} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o4pln87saz8trkxsf4qk683x4188573oua.png)
The Correct Answer is Transitive Property
The other properties in the options are;
Reflexive Property which states that any number is equal to itself for example (1=1, 2=2, a=a etc)
Symmetric Property states that if a=b then b=a.
Substitution property states that if a=b then a+c = b+c.
This other properties are incorrect and are not equivalent to the question.