13.9k views
5 votes
First question, thanks. I believe there should be 3 answers

First question, thanks. I believe there should be 3 answers-example-1

1 Answer

6 votes

Given: The following functions


A)cos^2\theta=sin^2\theta-1
B)sin\theta=(1)/(csc\theta)
\begin{gathered} C)sec\theta=(1)/(cot\theta) \\ D)cot\theta=(cos\theta)/(sin\theta) \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function


\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B


\begin{gathered} sin\theta=(1)/(csc\theta) \\ Note\text{ that} \\ csc\theta=(1)/(sin\theta) \\ sin\theta* csc\theta=1 \\ sin\theta=(1)/(csc\theta) \\ Therefore \\ sin\theta=(1)/(csc\theta),is\text{ an identities} \end{gathered}

C


\begin{gathered} sec\theta=(1)/(cot\theta) \\ note\text{ that} \\ cot\theta=(1)/(tan\theta) \\ tan\theta cot\theta=1 \\ tan\theta=(1)/(cot\theta) \\ Therefore, \\ sec\theta\\e(1)/(cot\theta),NOT\text{ IDENTITY} \end{gathered}

D


\begin{gathered} cot\theta=(cos\theta)/(sin\theta) \\ Note\text{ that} \\ cot\theta=(1)/(tan\theta) \\ cot\theta=1/ tan\theta \\ tan\theta=(sin\theta)/(cos\theta) \\ So, \\ cot\theta=1/(sin\theta)/(cos\theta) \\ cot\theta=1*(cos\theta)/(sin\theta) \\ cot\theta=(cos\theta)/(sin\theta) \\ Therefore \\ cot\theta=(cos\theta)/(sin\theta),is\text{ an Identity} \end{gathered}

E


\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=(1)/(sin^2\theta) \\ cot^2\theta=(cos^2\theta)/(sin^2\theta) \\ So, \\ (1)/(sin^2\theta)-(cos^2\theta)/(sin^2\theta) \\ (1-cos^2\theta)/(sin^2\theta) \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ (1-cos^2\theta)/(sin^2\theta)=(sin^2\theta)/(sin^2\theta)=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities


\begin{gathered} B)sin\theta=(1)/(csc\theta) \\ D)cot\theta=(cos\theta)/(sin\theta) \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

First question, thanks. I believe there should be 3 answers-example-1
User Max Schmeling
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories