The initial expresiion is:
![x^y=z](https://img.qammunity.org/2023/formulas/mathematics/college/vmdl40n08goz3q77q8p10dx6nm2b5bclcg.png)
Part A: If x = 3 and y = 4 then:
![\begin{gathered} 3^4=z \\ 81=z \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ct5uakux0iacxenldg5zejcmfy2frtk49d.png)
Part B: is y = 3 and z = 125 then:
![\begin{gathered} x^3=125 \\ x=\sqrt[3]{125} \\ x=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5lbk8rui9jo509mx0yu1uzexibzx3zagai.png)
Part C: if he rewrite the equation as:
![\sqrt[y]{z}=x](https://img.qammunity.org/2023/formulas/mathematics/college/irlozg2ubgzqnqa1zvxijsdx6pomt6cjtu.png)
and y = 2 and z = 2
then x will be a rational number because z is positive and the square root of a positive number is a rational number.
Part D: If x=8 then we can give the easier value to y so let it be y = 2 then we need to find a number that the square root is equal to 8 and this number is z = 64 so:
![\sqrt[2]{64}=8](https://img.qammunity.org/2023/formulas/mathematics/college/76tweijuz1nddx0k81708bp1hzo1l22s0e.png)