141k views
4 votes
Find the following compla tvortices for conjugate axis en dansesympates

Find the following compla tvortices for conjugate axis en dansesympates-example-1

1 Answer

4 votes

Hyperbola general formula:


((x-h)^2)/(a^2)-((y-k)^2)/(b^2)=1

In this case, the equation is


(\mleft(x-1\mright)^2)/(4)-((y-2)^2)/(9)=1

then,

h = 1

k = 2

a = 2

b = 3

Vertices


\begin{gathered} (h\pm a,k) \\ \text{substituting} \\ (1\pm2,2) \\ (3,2)\text{ and (-1,2)} \end{gathered}

Foci


\begin{gathered} (h\pm c,k) \\ c^2=a^2+b^2 \\ c^2=4+9 \\ c=\sqrt[]{13} \\ \text{substituting} \\ (1\pm\sqrt[]{13},2) \\ (1+\sqrt[]{13},2)\text{ and }(1-\sqrt[]{13},2) \end{gathered}

Conjugate axis endpoints


\begin{gathered} (h,k\pm b) \\ \text{substituting} \\ (1,2\pm3) \\ (1,5)\text{ and }(1,-1) \end{gathered}

Asymptotes


\begin{gathered} y=k\pm(b)/(a)(x-h) \\ \text{substituting} \\ y=2\pm(3)/(2)(x-1) \\ y=2+(3)/(2)(x-1) \\ \text{and} \\ y=2-(3)/(2)(x-1) \end{gathered}

User Dtw
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories