when 2 lines are parallels , have the same slope
the slope of
![y=-4x+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/vxk1ek5emaxxfvbs38sz3d1u4mp1oafq4m.png)
is -4 because is the coefficient of x
so I write the general equation of the line and replace the slope
![\begin{gathered} y=mx+b \\ \\ y=-4x+b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vgfm43f1x0j6b6aj1firvr378l37686mh6.png)
to find b, I replace the point (-3,2) since this must be fulfilled
so
![2=-4(-3)+b](https://img.qammunity.org/2023/formulas/mathematics/college/rse0ow6j6463asobvxsr4iupnwnjxi4ttu.png)
and solve b
![\begin{gathered} 2=12+b \\ b=2-12 \\ b=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eax1b8xflwjxwa3npznt43wicc6moiqrvp.png)
the equation of the parellel line is
![y=-4x-10](https://img.qammunity.org/2023/formulas/mathematics/college/su1l7oadgk9rswh9bgwzebna151ea29xf0.png)
so the right option is A