Answer:
1)
![P(t)=1633e^(0.0087t)](https://img.qammunity.org/2023/formulas/mathematics/college/cjwabx3es0pld4onrmh7oigb4lwdjkp32w.png)
Step-by-step explanation:
Since we are taking t = 0 as 1900. The initial population is the population in 1900:
![P_0=1633](https://img.qammunity.org/2023/formulas/mathematics/college/4brzo87s4rslpb9zehotxvnq46rr4y1u3z.png)
We can start writting the exponential model:
![P(t)=1633e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/dqt6bspn4e29yvo5ymydjkcoik5pop9qln.png)
:
We know that the population in 1950 (t = 50 in this model) is 2525. Then, we can find k by:
![P(50)=2525=1633e^(k\cdot50)](https://img.qammunity.org/2023/formulas/mathematics/college/vuazu93v6i20xg2yi6c6xhdlmuckt0ksxs.png)
And solve for k:
![(2525)/(1633)=e^(50k)](https://img.qammunity.org/2023/formulas/mathematics/college/kb64pdniitjw8c5g1tdr9fh9b9xb3plh61.png)
Now, we can apply natural logarithm on both sides:
![\ln((2525)/(1633))=\ln(e^(50k))](https://img.qammunity.org/2023/formulas/mathematics/college/lj8005g2r5dt1d17ld6pp6ucgwog17fjih.png)
Since natural log and the exponential functions are inverse functions:
![\ln((2525)/(1633))=50k](https://img.qammunity.org/2023/formulas/mathematics/college/zvrjs6ot6ztx95ssc2b95061nly3cojfnn.png)
![k=(\ln((2525)/(1633)))/(50)](https://img.qammunity.org/2023/formulas/mathematics/college/xdg78yxxxz2qi4a5hlb5lxw9ta6fmkyzsm.png)
![k\approx0.0087](https://img.qammunity.org/2023/formulas/mathematics/college/dv3hp96d8gn3nlemjt7x31hso32rza0obs.png)
Thus, the exponential model is:
![P(t)=1633e^(0.0087t)](https://img.qammunity.org/2023/formulas/mathematics/college/cjwabx3es0pld4onrmh7oigb4lwdjkp32w.png)
Question 2
Now, we need to use the model we just create to find the predicted population by the model:
At year 1900, t = 0 (that's how the problem asked us to define t)
Then
![P\left(0\right)=1633e^(0.0087\cdot0)=1633e^0=1633](https://img.qammunity.org/2023/formulas/mathematics/college/1xin95b00hqi78gibvs19ipr5ojrf8e884.png)
At year 1920, t = 20
![P(20)=1633e^(0.0087\cdot20)=1633e^(0.174)=1943](https://img.qammunity.org/2023/formulas/mathematics/college/9kw898tbz8lj4g8s66488fanqi3nhml7hu.png)
At year 1940, t = 40:
![P(40)=1633e^(0.0087\cdot40)=1633e^(0.348)=2313](https://img.qammunity.org/2023/formulas/mathematics/college/qmc9gcmaz1qcmetfblgu9hdkl4ysrexqr6.png)
At year 1960, t = 60
![P(60)=1633e^(0.0087\cdot60)=1633e^(0.522)=2752](https://img.qammunity.org/2023/formulas/mathematics/college/5buda68bw9rwk9x0g2ynu9mwkj1ezcjqj3.png)
At year 1980, t = 80
![P(80)=1633e^(0.0087\cdot80)=1633e^(0.696)=3275](https://img.qammunity.org/2023/formulas/mathematics/college/u5ll5yydi1rxh4fooom9q0sv0fip1nnqkd.png)
At year 2000, t = 100
![P(100)=1633e^(0.0087\cdot100)=1633e^(0.87)=3898](https://img.qammunity.org/2023/formulas/mathematics/college/drg951dwfpv0z4u50rd121974qlf170wfa.png)
At year 2020, t = 120
![P(120)=1633e^(0.0087\cdot120)=1633e^(1.044)=4639](https://img.qammunity.org/2023/formulas/mathematics/college/x6epod3pk6z95ida3th70xr89vfwgko3bi.png)
At year 2040, t = 140
![P(140)=1633e^(0.0087\cdot140)=1633e^(1.218)=5520](https://img.qammunity.org/2023/formulas/mathematics/college/m2cmuwdgqnafoq754vff7u8235s65i7vis.png)