Answer:
![\begin{gathered} x=\text{ 99}\degree \\ y\text{ = 64}\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/72cus0fes22di3bp2z4ogwby9ft2inx6bh.png)
Step-by-step explanation:
Here, we want to get the value of x and y
From the given image, the angle y and 116 lie on a straight line
The sum of the angles on a straight line is 180 degrees
Thus:
![\begin{gathered} 116\text{ + y = 180} \\ y\text{ =180-116} \\ y\text{ = 64}\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w85cv1iwejalw328one99osfr6acgm3viw.png)
The sum of the internal angles of a polygon can be calculated by the formula:
![180(n-2)](https://img.qammunity.org/2023/formulas/mathematics/college/kaxgcai1s1bljrdoe9whl7fqrdyzumfhp7.png)
where n is the number of sides the polygon has
In the case of the given question, n is 4
Substituting the value of n, we have it that:
![180(4-2)\text{ = 360 degrees}](https://img.qammunity.org/2023/formulas/mathematics/college/t5jr8piwshhm7nwww1l5mwnfngd2wbpmth.png)
To get the value of x:
![\begin{gathered} x\text{ + y + 125 + 72 = 360} \\ But\text{ from above , y = 64}\degree \\ Substituting\text{ this:} \\ x\text{ + 64 + 125 + 72 = 360} \\ x\text{ = 360-125-64-72} \\ x\text{ = 99 } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ni3iuxykv9t4cgpmoocavvahdscx4bxejx.png)