Step-by-step explanation:
Given;
We are given the dimensions of a cone shaped sculpture as follows;
![\begin{gathered} Height=5ft \\ Base\text{ }circumference=28.260ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mzw7feovm3jqwert2ggkg8w8jrtzujbgjp.png)
Required;
We are required to find the volume of this cone-shaped sculpture.
Step-by-step solution;
To calculate the volume of a cone, the formula to be used is;
![\begin{gathered} Volume\text{ }of\text{ }a\text{ }cone: \\ Vol=\pi r^2(h)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/goo4e5p4q5x4vsjpt0cn6uhd6vmd5bfwhf.png)
To determine the value of r, w shall take the variable r and make it the subject of the formula;
![\begin{gathered} Circumference\text{ }of\text{ }a\text{ }circle: \\ Cir=2\pi r \\ make\text{ }r\text{ }the\text{ }subject: \\ (C)/(2\pi)=(2\pi r)/(2\pi) \\ \\ Therefore: \\ (C)/(2\pi)=r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ju4r5hyqmmaegkonyid2hgh2hshba04lip.png)
With the value of the circumference already given we now have;
![\begin{gathered} (28.260)/(2(3.14))=r \\ \\ (28.260)/(6.28)=r \\ \\ 4.5=r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hspqkugpo9ra2648iwztsuzq3zi3nb8yaz.png)
This means the radius of the circular base of the sculpture is 4.5 feet.
The volume of the sculpture therefore is;
![Vol=\pi r^2(h)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/4hnbi258ro46niibbfs463x4u9qq0f4uui.png)
![\begin{gathered} Volume=3.14*(4.5)^2*(5)/(3) \\ \\ Volume=(3.14*20.25*5)/(3) \\ \\ Volume=105.975 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1hd48g3aa3lo7zneu7pilmbc32h7hn7r98.png)
The volume rounded to the nearest hundredth therefore is,
ANSWER:
![Volume=105.98ft^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/u859lmuey07zaqbf7mz41sadaywyqc2d70.png)