Given the function below,
![f(x)=\frac{\sqrt[]{9-7x}}{6x^2+13x-15}](https://img.qammunity.org/2023/formulas/mathematics/college/csjwmzjtcnlbd385r8if8ygair2s96zfdl.png)
To find the domain of the function above, we factorise the denominators to find x factors,

Factorising the denominator,

The domain of a function is the set of all possible values of x, except for x=0.
Hence, the domain of the function is the set of all possible values of x except -3 and 5/6.