Given:
![\begin{gathered} \text{ Radius of the Earth }=6.3781*10^6 \\ \\ \text{ Radius of a Lacrosse Ball }=3*10^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rcdnaqdcjxbanecbihfzxs3f3fjatvezst.png)
Find-:
How many times greater is the radius of Earth is than the radius of a lacrosse ball
Explanation-:
Let x times grater then lacrosse ball
so,
![\begin{gathered} 6.3781*10^6=x*3*10^(-2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bezepha0bq4yoqhtsgx2xmngrgjqvwsl2s.png)
![\begin{gathered} x=(6.3781*10^6)/(3*10^(-2)) \\ \\ x=(6.3781*10^6*10^2)/(3) \\ \\ x=(6.3781*10^8)/(3) \\ \\ x=2.126*10^8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p8lep0d619llo7mwebvfihz9jnzeclcqf3.png)
So the radius of Earth is 2.16 10 to the power 8 times greater than then radius of a lacrosse ball