Given the following equation:
![\text{ x}^2\text{ - 14x + 48}](https://img.qammunity.org/2023/formulas/mathematics/college/vr1vpli1weefz08pe6qnd4q3gsbuw87jnm.png)
Let's factorize the given trinomial,
Let's think of factors of 48 that will give you a sum of -14.
Product Factors Sum of Factors
48 1 x 48 49
48 -1 x -48 -49
48 6 x 8 14
48 -6 x -8 -14
Therefore, the factors must be -6 and -8.
We get,
![\text{ x}^2\text{ - 14x + 48 = (x + \_\_)(x + \_\_)}](https://img.qammunity.org/2023/formulas/mathematics/college/ss0kp0bb6p0xgrj9g6f2poyci13rifjt8k.png)
![\text{ = (x + (-6))(x + (-8))}](https://img.qammunity.org/2023/formulas/mathematics/college/jic8tvrmucerfjunlktgwt9781p8v0pvjp.png)
![\text{ = (x -6)(x - 8)}](https://img.qammunity.org/2023/formulas/mathematics/college/yogje6nbwb7z1e1unqsa3o5cgrzaq43oq1.png)
Therefore, the answer is (x - 6)(x - 8). It is letter B.