The length L of a moving object whose rest length is L_0 is:
![L=\sqrt{1-(v^2)/(c^2)}L_0](https://img.qammunity.org/2023/formulas/physics/college/dl1gisevrx08qeh8t532p697n22063pne2.png)
The length contraction can be calculated as the difference L_0-L:
![L_0-L=\left(1-\sqrt{1-(v^2)/(c^2)}\right)L_0](https://img.qammunity.org/2023/formulas/physics/college/3ey45vwrunpdcayb5mrzibg6wwid5e0hep.png)
For v<, we have:
![\begin{gathered} L_0-L\approx\left(1-\left[1-(1)/(2)\left((v)/(c)\right)^2\right]\right)L_0 \\ \\ =\left((v)/(c)\right)^2(L_0)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uagu37qta4z2r9ibv3rly1aizq9a4olxzc.png)
Replace v=51.35km/h, c=300,000km/s and L_0=3.133m:
![\begin{gathered} \Delta L=\left((v)/(c)\right)^2(L_0)/(2) \\ \\ =\left((51.35(km)/(h)*(1h)/(3600s))/(300,000(km)/(s))\right)^2(3.133m)/(2) \\ \\ =3.54...*10^(-15)m \\ \\ =3.54...fm \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8lhm6aianvzyinrluot5sjeswcrj27n7vb.png)
The diameter of a hydrogen atom is approximately 10.6*10^-11m. Then, the length contraction of th ecar is much less than the diameter of a hydrogen atom.
Therefore, the length contraction of the automobile is approximately 3.54 femtometers.