55.3k views
4 votes
Use the binomial theorem to expand the binomial.(x – 3)^5

User Bruno Reis
by
5.3k points

1 Answer

4 votes

The binomial theorem tells us how to expand an expression of the form (a + b)^2 like this:


(a+b)^n=nC_0a^nb^0+nC_1a^(n-1)b^1+\cdots nC_na^0b^n

And nCr is given by the following formula:


nC_r=(n!)/(r!(n-r)!)

Then, for this polynomial, we can apply the binomial theorem with a = x, b = -3 and n = 5 to get:


(x-3)^5=5C_0x^5(-3)^0+5C_1x^4(-3)^1+5C_2x^3(-3)^2+5C_3x^2(-3)^3+5C_4x^1(-3)^4+5C_5x^0(-3)^5
\begin{gathered} 5C_0=1 \\ 5C_1=5 \\ 5C_2=10 \\ 5C_3=10 \\ 5C_4=5 \\ 5C_5=1 \end{gathered}

Simplifying, we get:


\begin{gathered} (x-3)^5=(1)x^5(-3)^0+(5)_{}x^4(-3)^1+(10)_{}x^3(-3)^2+(10)x^2(-3)^3+(5)x^1(-3)^4+(1)x^0(-3)^5 \\ (x-3)^5=x^5+(5)_{}x^4(-3)^{}+(10)_{}x^3(9)+(10)x^2(-27)+(5)x^1(81)^{}-243 \\ (x-3)^5=x^5-15_{}x^4^{}+90_{}x^3-270x^2+405x^{}^{}-243 \end{gathered}

Then, the expanded polynomial is:

x⁵ - 15x⁴ + 90x³ - 270x² + 405x - 243

User Lamanus
by
6.1k points