The shaded area is equal to the area of the circle substracted fromt he area of the trapezoid:
![A=A_T-A_C](https://img.qammunity.org/2023/formulas/mathematics/college/a9rtoiev5brws4x1vim63xd548lph25quc.png)
Area of a trapezoid:
![A_T=((a+b))/(2)\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/4d9fdtdqv2nsofgfnu5emdmx2xgy5xyxzq.png)
a is long base
b is short base
h is height
Area of a circle:
![A_C=\pi\cdot r^2](https://img.qammunity.org/2023/formulas/mathematics/college/aioo0zs3kkj6wpbgxfezfbzzphsav7oqi0.png)
The given trapezoid has a height equal to 2 times the radius of the circle in it. Then, the area of the shaded area is:
![A=((a+b))/(2)\cdot2r-\pi\cdot r^2](https://img.qammunity.org/2023/formulas/mathematics/college/6uzrpzl6wflaicvi2ou0cm910dkab2rhc0.png)
a=13in
b=9in
r=3in
![\begin{gathered} A=((13in+9in))/(2)\cdot2(3in)-\pi\cdot(3in)^2 \\ \\ A=((22in))/(2)\cdot6in-9\pi in^2 \\ \\ A=66in^2-9\pi in^2 \\ \\ A\approx37.73in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uq3ugpkkx49b1dycfw26xfkzp1dnw36tuu.png)