Answer:
![0.7852](https://img.qammunity.org/2023/formulas/mathematics/college/j21exo8w7uqdrzesdbh63bendyh8z7e35x.png)
Step-by-step explanation:
The probability we want to calculate is:
![P(X\text{ < 75\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/ult3doho9wpg1p2tdg4jngi9wyhw7fpr4f.png)
Now, we use the normal approximation of the binomial distribution
That would be:
p = 0.8 (probability of germination) given as 80%
q = 1 - p = 0.2 (probability of no germination)
We have the mean as:
![mean\text{ = np = 90 }*\text{ 0.8 = 72}](https://img.qammunity.org/2023/formulas/mathematics/college/4y8jzqobv26ugft4wjdbh0y2wri9xp2eoh.png)
We have the standard deviation as:
![SD\text{ = }√(npq)\text{ = }√(90*0.8*0.2)\text{ = 3.795}](https://img.qammunity.org/2023/formulas/mathematics/college/rnz7cvlm80dpveb00kdag6b19i6622rrv1.png)
Now, let us get the value of z;
![\begin{gathered} z\text{ = }\frac{x-\text{ mean}}{SD} \\ \\ z\text{ = }(75-72)/(3.975)\text{ = 0.79} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tx1b8ewc6fopihrfdboooffj0qg2zs5h5k.png)
Now, we use the standard normal distribution table
![P(z\text{ < 0.79\rparen = 0.7852}](https://img.qammunity.org/2023/formulas/mathematics/college/z2u67vrhch3z5tv1egv8fyu9n5elvohb4x.png)