First consider the blue function.
Consider that the equation of a straight line passing through two points is given by,
![y-y_1=(y_2-y_1)/(x_2-x_1)*(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/m7a3hf5yb78k7zc3hdk9nlctkaxukfi655.png)
Since the function is a straight line passing through (6,20) and (30,7), so the equation is given by,
![\begin{gathered} y-20=(7-20)/(30-6)*(x-6) \\ y-20=(-7)/(12)*(x-6) \\ y=(-7)/(12)x+(7)/(2)+20 \\ y=(-7)/(12)x+(47)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dxn9w4uuhrk9ddt81577pym2icracujqkc.png)
Thus, the required function for blue curve is,
![f(t)=(-7)/(12)t+(47)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/rkw0m6xh8sgnxkdo55td9hvw6lzldgtu6d.png)
Consider the skeletal equation for the exponential function,
![y=y_oe^(kx)](https://img.qammunity.org/2023/formulas/mathematics/college/hb7937qvy2v0fsapng3nsmdd2kg2pk2rm8.png)
Take logarithms on both sides,
![\begin{gathered} \ln y=\ln (y_oe^(kx)) \\ \ln y=\ln y_o+\ln (e^(kx)) \\ \ln y=\ln y_o+kx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rcrx9jion95wbccsse6qnp5dvtzt2u6stj.png)
Since the curve passes through (6,20),
![\begin{gathered} \ln 20=\ln y_o+k(6) \\ \ln 20=\ln y_o+6k \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/egla31wkfjcauw4cax41zub8bx8mlnwht3.png)
Also the curve passes through (30,7),
![\begin{gathered} \ln 7=\ln y_o+k30) \\ \ln 7=\ln y_o+30k \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n3stxk9bttu3xs5kqao77vd0z50aqkfm5b.png)
Subtract the equations,
![\begin{gathered} \ln 20-\ln 7=(\ln y_o+6k)-(\ln y_o+30k) \\ \ln ((20)/(7))=-24k \\ 1.05=-24k \\ k=-0.0437 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/39nsjzm7re9q2jgwkxgqxb700z5y7klwqo.png)
Substitute this value in the equation,
![\begin{gathered} \ln 20=\ln y_0+6(-0.0437) \\ \ln y_0=\ln 20+0.262 \\ \ln y_0=2.9957+0.262 \\ \ln y_0=3.2577 \\ y_0=e^(3.2577) \\ y_0=25.9897 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nxaa1htw0wzc3o9wstppyyfv5egwj5ow6x.png)
Substitute the values in the skelatal equation,
![y=25.9897e^(-0.0437x)](https://img.qammunity.org/2023/formulas/mathematics/college/j3nw2b0od29yjbfef2y1ewsg90cs62yw00.png)
Thus, the equation governing the red curve is,
![g(t)=25.9897e^(-0.0437t)](https://img.qammunity.org/2023/formulas/mathematics/college/ih5ap870jgmobzx15aiufbyta4phl6hw5a.png)