47.5k views
5 votes
1. P(adult and vanilla)2. P(chocolate/adult)3. P(adult/chocolate)4. P(not vanilla/teen)5. P(teen/not vanilla)6. P(neither/teen or adult)7. P(teen or adult/neither)Answer the following problems about two way frequency tables and make sure to reduce your fraction.

1. P(adult and vanilla)2. P(chocolate/adult)3. P(adult/chocolate)4. P(not vanilla-example-1
User Mxx
by
8.9k points

1 Answer

2 votes

From the given table, the total number of people, T=269.

1)

The number of adults who like vanila, N=54.

So, P(adult and vanilla) can be found as,


P\mleft(adult\text{ and vanilla}\mright)=(N)/(T)=(54)/(269)

2)

P(chocolate/adult) can be found as,


P\mleft(chocolate/adult\mright)=\frac{P(\text{choclate and adult)}}{P(\text{adult)}}=((55)/(269))/((119)/(269))=(55)/(269)

3)


P\mleft(adult/chocolate\mright)=\frac{P(\text{choclate and adult)}}{P(\text{chocolate)}}=((55)/(269))/((107)/(269))=(55)/(107)

4)


P\mleft(notvanilla/teen\mright)=\frac{P(not\text{ vanilla and t}een)}{P(\text{teen)}}=((12+45)/(2))/((73)/(269))=(57)/(73)

5)


P\mleft(teen/notvanilla\mright)=\frac{P(\text{teen and not vanilla)}}{P(\text{not vanilla)}}=((12+45)/(269))/((269-92)/(269))=(57)/(177)

6)


P\mleft(neither/teenoradult\mright)=\frac{P(\text{neither and teen or adult)}}{P(\text{teen or adult)}}=((45+10)/(269))/((73+119)/(269))=(55)/(192)

7)


P\mleft(teenoradult/neither\mright)=\frac{P(\text{teen or adult and neither)}}{P(\text{neither)}}=((45+10)/(269))/((70)/(269))=(55)/(70)=(11)/(14)

User AndSmith
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories