66.5k views
4 votes
Find the derivative of y=3x/(x^2 + 1)

User SWAT
by
4.2k points

1 Answer

2 votes

To find the derivative of


y=(3x)/(x^2+1),

we will use the division rule for derivatives.

The division rule states that:


((f(x))/(g(x)))^(\prime)=(f^(\prime)(x)g(x)-g^(\prime)(x)f(x))/(g(x)^2).

Therefore, the derivative of the given quotient is:


y^(\prime)=((3x)^(\prime)(x^2+1)-(x^2+1)^(\prime)(3x))/((x^2+1)^2).

Simplifying the above result we get:


\begin{gathered} y^(\prime)=(3(x^2+1)-(2x\cdot3x))/((x^2+1)^2)=(3(x^2+1)-6x^2)/((x^2+1)^2)=(3(x^2+1-2x^2))/((x^2+1)^2) \\ =(3(1-x^2))/((x^2+1)^2). \end{gathered}

Answer:


y^(\prime)=(3(1-x^2))/((x^2+1)^2).

User Wil W
by
4.3k points