The Solution:
Suppose we have a function given as below:
![y=f(x)=2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/mva12bb4431fbt011xeij3egxhs5ut5faf.png)
Whatever values x takes are examples of domain input while the corresponding values of y for each value of x are examples of range output. For example, let the values of x be -1, 0, 1, 2,... So, the corresponding values of y will be
![\begin{gathered} \text{ when x=-1,} \\ y=2(-1)+1=-2+1=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p4azzhmm0364phgbikstjqndxn70haiz4j.png)
When x =0,
![y=2(0)+1=0+1=1](https://img.qammunity.org/2023/formulas/mathematics/college/txnt0mawfpkh4e17ygsbyi1bemcvpdswyi.png)
When x = 1
![y=2(1)+1=2+1=3](https://img.qammunity.org/2023/formulas/mathematics/college/d8xkrfxcp6aox26dougv6jtgsmmawk2qpc.png)
When x = 2
![y=2(2)+1=4+1=5](https://img.qammunity.org/2023/formulas/mathematics/college/fbof2y2sqlzrlrajotp1ejz5egauqdrhgb.png)
So,
Domain input = {-1, 0, 1, 2,...}
Range output = {-1, 1, 3, 5,...}