167k views
4 votes
Determine each ratio as a decimal to four places, then find the angle to the nearest whole numberАAngleRatioRatio as adecimalsin c15 cm8 cmCOS CLan Btan cC С17 cmBcos BIsin B

Determine each ratio as a decimal to four places, then find the angle to the nearest-example-1
User Rml
by
4.4k points

1 Answer

2 votes

Using trigonometry functions:


\begin{gathered} \sin (C)=(opposite)/(hypotenuse)=(8)/(17)=0.4706 \\ C=\sin ^(-1)((8)/(17))=28 \end{gathered}
\begin{gathered} \cos (C)=(adjacent)/(hypotenuse)=(15)/(17)=0.8824 \\ C=\cos ^(-1)((15)/(17))=28 \end{gathered}
\begin{gathered} \tan (B)=(opposite)/(adjacent)=(15)/(8)=1.875 \\ B=\tan ^(-1)((15)/(8))=62 \end{gathered}
\begin{gathered} \tan (C)=(opposite)/(adjacent)=(8)/(15)=0.5333 \\ C=\tan ^(-1)((8)/(15))=28 \end{gathered}
\begin{gathered} \cos (B)=(adjacent)/(hypotenuse)=(8)/(17)=0.4706 \\ B=\cos ^(-1)((8)/(17))=62 \end{gathered}
\begin{gathered} \sin (B)=(opposite)/(hypotenuse)=(15)/(17)=0.8824 \\ B=\sin ^(-1)((15)/(17))=62 \end{gathered}

Determine each ratio as a decimal to four places, then find the angle to the nearest-example-1
User Nick Mertin
by
4.4k points