Answer:
• m∠2 = 90°
,
• m∠3 = 73°
,
• m∠4 = 17°
,
• m∠5 = 90°
,
• m∠6 = 73°
Step-by-step explanation:
Angle 2 is a right angle, therefore:
• m∠2 = 90°
Given that m∠1 = 17°:
![m\angle1+m\angle2+m\angle3=180\degree\text{ (Angle on a straight line)}](https://img.qammunity.org/2023/formulas/mathematics/college/s67don90cyb5r4s70k78rpm61ks5qvlamp.png)
Substitute the given values:
![\begin{gathered} 17\degree+90\degree+m\angle3=180\degree \\ 107\degree+m\angle3=180\degree \\ m\angle3=180\degree-107\degree \\ m\angle3=73\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpmhzan33gzzo7veaayaomojvvy9qpdqid.png)
• m∠3 = 73°
Angles 1 and 4 are vertically opposite angles, therefore:
![\begin{gathered} m\angle4=m\angle1 \\ m\angle4=17\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wilhbax7q4atuzjl8jt1wroqzfaxngxebr.png)
Angles 2 and 5 are vertically opposite angles, therefore:
![\begin{gathered} m\angle5=m\angle2 \\ m\angle5=90\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7kugyydl1gylhfrh795ypjkag9ytxw9te7.png)
Angles 3 and 6 are vertically opposite angles, therefore:
![\begin{gathered} m\angle6=m\angle3 \\ m\angle6=73\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6pl5hkbwzek7qog6a4rmjphdsj35tpgtpc.png)