113k views
4 votes
Question 5 For AMVL, MZV = 90°, mZL = 30°, and ML = 54. (Draw a picture to help.) What is the value of VL? Answer А B 183 27V3 18 27

User DaveD
by
3.9k points

1 Answer

3 votes

The side VL can be obtained using sin rule


\begin{gathered} \frac{\sin\text{ 90}}{54}\text{ =}\frac{\sin \text{ 60}}{VL} \\ \\ \Rightarrow\frac{1}{54\text{ }}=\frac{\frac{\sqrt[]{3}}{2}}{VL} \end{gathered}


\begin{gathered} \frac{1}{54\text{ }}=\text{ }\frac{\sqrt[]{3}}{2VL} \\ \text{Cross Multiply} \\ 2VL\text{ = 54 }\sqrt[]{3} \\ VL\text{ =}\frac{54\sqrt[]{3}}{2} \\ VL\text{ = 27}\sqrt[]{3} \end{gathered}

Option B is correct

Question 5 For AMVL, MZV = 90°, mZL = 30°, and ML = 54. (Draw a picture to help.) What-example-1
User MayurK
by
4.4k points