Answer:
P = 0.3511
Step-by-step explanation:
Using the equation for the binomial distribution, we get that the probability can be calculated as:
![P(x)=\text{nCx}\cdot p^x\cdot(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/b5oq76u39if3w0fsuzlhar4fcaph8n9ehy.png)
Where nCx is calculated as:
![\text{nCx =}(n!)/(x!(n-x)!)](https://img.qammunity.org/2023/formulas/mathematics/college/2urhm9rmk0zx97rxbkwixintazy0u9j000.png)
So, n is the total number of bats, x is the number of hits and p is the probability of getting a hit. So, replacing n = 4, x = 2 and p = 0.41, we get:
![\begin{gathered} 4C2=(4!)/(2!(4-2)!)=\frac{4!}{2!^{}\cdot2!}=6 \\ P(2)=4C2\cdot(0.41)^2\cdot(1-0.41)^(4-2) \\ P(2)=6\cdot(0.41)^2\cdot(0.59)^2 \\ P(2)=0.3511 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/shsdqlb2i1ulost3fydovx2bliokq1dow9.png)
Therefore, the answer is P = 0.3511