Let the number of silk be
![=x](https://img.qammunity.org/2023/formulas/mathematics/college/1ye1eo60321kt0irebsbvlxoc6mkb0xjkb.png)
Let the number of cottons be
![=y](https://img.qammunity.org/2023/formulas/mathematics/high-school/eyqg7ht214ag7yrcgx5vsdv0indwor49dl.png)
The total number of silk and cotton is 4.25 yards and this can be represented as
![=x+y=4.25\ldots\ldots\text{.}\mathrm{}(1)](https://img.qammunity.org/2023/formulas/mathematics/college/zdnplh6g19cyp3psezdqf4x7humerdricq.png)
Silk is $16.90 per yard and cotton is $4 per yard has a total of $36.35
![16.90x+4y=$36.35$\ldots\ldots\ldots(2)](https://img.qammunity.org/2023/formulas/mathematics/college/o67gd34o0fjiq01sdjnzbqz6rtc7nytljs.png)
From equation one, we can get an equation 3 which will be used to solve simultaneously
![\begin{gathered} x+y=4.25 \\ y=4.25-x\ldots\ldots(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9p8or4h1yf4aw6tvrn2xwwpx3r7dh45gev.png)
Using substitution method, substitute equation (3) in equation (2)
![\begin{gathered} 16.90x+4y=$36.35$ \\ 16.90x+4(4.25-x)=$36.35$ \\ 16.90x+17-4x=36.35 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7v0rjfobchevpmiqjqjpr8l8ili21jz36j.png)
Collect similar terms
![\begin{gathered} 16.90x+17-4x=36.35 \\ 16.90x-4x=36.35-17 \\ 12.90x=19.35 \\ \text{divide both sides by 12.90} \\ (12.90x)/(12.90)=(19.35)/(12.90) \\ x=1.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j3zdtjs03bl8kaihvca7zol69y73fs6w6n.png)
Substitute x= 1.5 in eqaution (3)
![\begin{gathered} y=4.25-x \\ y=4.25-1.5 \\ y=2.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/epufiviohpguvskslho86i647lv2ikafga.png)
Alternatively,
Using the graphical method, we will have
Therefore,
The value of x = 1.5 , the value of y = 2.75