A reflection over the y-axis
An horizontal translation of 5 units to the right
A vertical stretch of 2
A vertical translation of 3 units up
Step-by-step explanation:
![\begin{gathered} \text{Parent function: }\sqrt[]{x} \\ A\text{ reflection over the y ax is: (x, y) }\rightarrow\text{ (-x, y)} \\ A\text{ reflection over the y ax is = }\sqrt[]{-x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hgy3adhwz4pdjw06v96jiwpjvi6bjgqy0b.png)
![\begin{gathered} An\text{ }horizontal\text{ translation of 5 units to the right: } \\ y\text{ = f(x) - d, where d = 5} \\ \text{ }A\text{ translation of 5 units to the right = }\sqrt[]{-x-5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tutcn4kfaywwiegm7jwrjhpxi99drq7vfi.png)
![\begin{gathered} \text{Vertical stretch of 2: enlargement by a scale factor of 2} \\ \text{Vertical stretch of 2 = }2*\text{ }\sqrt[]{-x-5} \\ \text{Vertical stretch of 2 = }2\text{ }\sqrt[]{-x-5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r9h9pg54o514jtrjxzd222gb5o48hdb13l.png)
![\begin{gathered} \text{Vertical }Translation\text{ of 3 units up: } \\ y\text{ = f(x) + 3} \\ Translation\text{ of 3 units up = }2\text{ }\sqrt[]{-x-5}\text{ + 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yirjo3t1520t4lc8rxwrtqpodhuzw2tosq.png)
Transformations on the parent function:
A reflection over the y-axis
An horizontal translation of 5 units to the right
A vertical stretch of 2
A vertical translation of 3 units up