Answer:
90% confidence interval is: ( 1.7 to 8.7 )
Explanation:
Given the data in the question;
Method 1 Method 2
n₁ = 51 n₂ = 76
x"₁ = 81.6 x"₂ = 76.4
σ₁ = 12.24 σ₂ = 11.19
Lets get the Margin of Error(M.E)
M.E =
√(σ₁²/n₁ + σ₂²/n₂ )
for 90% confidence interval
∝ = 1 - 0.90 = 0.10
∝/2 = 0.10/2 = 0.05
=
= 1.64
so we substitute
M.E = 1.64 × √((12.24)²/51 + (11.19)²/75 )
M.E = 1.64 × √( 2.9376 + 1.669548)
M.E = 1.64 × √( 2.9376 + 1.669548)
M.E = 3.52
so, for 90% confidence interval for x"₁ - x"₂ will be;
C.I = x"₁ - x"₂ ±
√(σ₁²/n₁ + σ₂²/n₂ )
= 81.6 - 76.4 ± M.E
= 81.6 - 76.4 ± 3.52
= 5.2 ± 3.52
Lower Limit = 5.2 - 3.52 = 1.68 ≈ 1.7
Upper Limit = 5.2 + 3.52 = 8.72 ≈ 8.7
Therefore; 90% confidence interval is: ( 1.7 to 8.7 )