26.0k views
4 votes
Hello. solve for x in the equation x2 - 10x+25=35?

1 Answer

5 votes

\begin{gathered} \text{Given} \\ x^2-10x+25=35 \end{gathered}

Move the constant on the right side to the left side by subtracting both sides by 35


\begin{gathered} x^2-10x+25=35 \\ x^2-10x+25-35=35-35 \\ x^2-10x-10=\cancel{0} \end{gathered}

Now that it is in the standard form of quadratic equation, we can use the quadratic formula to solve for x


\begin{gathered} \text{The standard form is }ax^2+bx+c=0 \\ \\ \text{In }x^2-10x-10=0, \\ a=1,b=-10,c=-10 \end{gathered}
\begin{gathered} \text{Use the quadratic formula} \\ x=( -b \pm√(b^2 - 4ac))/( 2a ) \\ \\ \text{Substitute the values for }a,b\text{ and }c \\ x=( -(-10) \pm√((-10)^2 - 4(1)(-10)))/( 2(1) ) \\ x=\frac{10\pm\sqrt[]{100-(-40)}}{2} \\ x=\frac{10\pm\sqrt[]{100+40}}{2} \\ x=( 10 \pm√(140))/( 2 ) \\ x=( 10 \pm2√(35)\, )/( 2 ) \\ x=( 10 )/( 2 )\pm(2√(35)\, )/( 2 ) \\ x=5\pm\frac{\cancel{2}\sqrt[]{35}}{\cancel{2}} \\ x=5\pm\sqrt[]{35} \end{gathered}

Therefore the solution for the given equation is


\begin{gathered} x=5+\sqrt[]{35}\text{ or }x=10.9161 \\ \text{AND} \\ x=5-\sqrt[]{35}\text{ or }x=-0.9161 \end{gathered}

User MS Ibrahim
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories